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Abstract The classical approach in  Arrhenius prediction of drug stability 
uses two sequential steps of linear regression involving ( a )  a function of drug 
content versus time to obtain the rate constants (k)  at several elevated tem- 
peratures and ( h )  the relationship of logarithm of mean k versus reciprocal 
temperature to predict the room temperature rate constant and hence the 
shelf-life of the drug. Uncertainties in drug content determinations are often 
neglected in the second regression. The classical approach also provides a wide 
and unsymmetrical 95% confidence interval for the predicted shelf-life. We 
have developed equations which allow for direct statistical prediction of 
shelf-life using observed values of drug contcnt, time, and temperature. 
Nonlinear regression analysis was employed to provide parameter estimates 
of drug shelf-life and the energy of activation. The developed approach was 
shown to provide good estimates of shelf-life with meaningful statistics of 
reactions over a wide range of stability and energetics, with various kinetic 
orders, with different levels of noise in  the data. and with different types of 
data structure. Comparison between the nonlinear approach and the olassical 
approach showed that the nonlincar approach provided better mean estimates 
of shelf-life with much smaller and morc symmctricalY5% confidence intervals 
than the classical approach. 7 he method appears sufficiently robust and 
wide-ranging as to be potentially applicable for the prediction of the drug 
stability of pharmaceutical products. 
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The establishment of the projected expiration date (or 
shelf-life) of a pharmaceutical product is of importance to the 
pharmaceutical industry. Accelerated stability testing using 
the Arrhenius equation is often employed to treat stability data 
obtained under elevated tcmperaturc storage conditions for 
the prediction of the shelf-life of drug products. The classical 
approach consists of two sequential steps which include ( a )  the 
choice of a proper order for the degradation reactions to de- 
scribe the drug content (amount or concentration) Genus time 
relationship for determining rate constants at each elevated 
temperature and ( h )  the application of the Arrhenius equation 
to predict (or extrapolate) the room tcmperaturc rate constant, 
and hence the shelf-life of the drug, through the use of the 
mean rate constants obtained at scveral elevated temperatures. 
Linear regression analysis ( 1 )  is the statistical method cm- 
ployed in each of these two steps. 

Although this classical linear approach has been used quite 
frequently, the method of data treatment appears to suffer 
from two statistical problems. First, since Arrhenius treatment 
often employs only the mean rate constants obtained at  ele- 
vated temperatures to predict drug shelf-life, errors associated 
with the determination of drug content are not included (and 
thus they are often ignored) in the analysis of accelerated 
stability data. Second, the 95% confidence interval of the 
predicted room temperature rate constant derived from the 
confidence band of the best-fitted straight line may be so wide 
as to make the predicted shelf-life of little value (2). Because 
of these inherent problems in the classical approach, it seems 

desirable to develop an alternate approach for the treatment 
of accelerated stability data so as to provide an improved 
prediction of drug shelf-life. 

This study was initiated to develop and test mathematical 
relationships among drug content, time, and temperature, 
which take into account the errors in the drug content data for 
the prediction of shelf-life of drug products. A one-step non- 
linear approach is proposed for the treatment of accelerated 
stability data. Comparison of this approach with the classical 
method is reported. 

BACKGROUND 

The shelf-life or expiration date of a drug product is defined ac the time 
period required for a drug to decompose to a specified fraction of the labeled 
drug content, usually 90%. This shelf-life may be determined by directly 
monitoring the drug content in the drug product as  a function of time at  some 
ambient storage conditions, e.g., 25'C and certain humidity and light levels. 
The proper order for the degradation reactions was determined usually by 
examining the best fit of plots of drug content oersus time (for a zero-order 
reaction) or of the logarithm of drug contcnt uersus time (for a first-order 
reaction). Linear regression analysis may then be used to estimate the rate 
constant at the specified storage conditions. The time for the lower 95% con- 
fidence limit curve about the fitted straight line to reach 90% of the labeled 
drug content is assigned as the shelf-life of the pharmaceutical product (3,  
4). 

Although the shelf-life of the drug product can be accurately determined 
by the previously described method, it is usually a time-consuming process. 
To obtain a predicted shelf-life in a shorter period of time, accelerated stability 
testing is employed. Most frequently, accelerated stability testing is coupled 
with the use of the Arrhenius equation for the prediction of drug stability ( 5 ,  
6 ) .  This approach involves two steps. First, a correct order of degradation 
reaction is determined to describe the functional rclationship between drug 
content and time at several elevated temperatures. The equations for zero-, 
first-. and second-order degradation reactions are respectively: 

C = C o - k t  (Eq. 1) 

(Eq. 2) C = Coexp ( - k t )  

_ - _ =  kt c co 
where k is the rate constant. Co and C a r e  the drug contents at time zero and 
time i ,  respectively. Both reactants are assumed to have the same initial 
contents for the second-order reaction. The equation for the first-order reaction 
can also be expressed in a linearized form: 

In C' = In Co - k t  

The linear regression method may then be used to obtain the rate constant 
at each elevated temperature by using Eq. I .  4. or 3 for each order of reac- 
tion. 

In the second step, the Arrhenius equation (Fq. 5 or 6 )  is employed to relate 
the logarithm of mean k linearly to the reciprocal of the elevated temperature, 
T .  

(Eq. 4)  

k = A exp -2 (3 
E ,  

Ink = In A -- 
RT 

where R is the gas constant. 
In employing the Arrhenius approach, several assumptions are implicit: 
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( a )  that the kinetic model is valid, (6) that analytical accuracy is not com- 
promised over the time of the stability study, and (c) that the Arrhenius 
equation is valid, i.e., linear extrapolation beyond the observed data is feasible. 
In practice, after obtaining the estimates of the energy of activation (E,) and 
frequency factor ( A )  through the use of Eq. 6 uia the least-squares technique, 
the rate constant at room temperature and, subsequently, the shelf-life can 
then be predicted. The 95% confidence interval of the predicted room tem- 
perature rate constant caq be derived from the confidence band of the re- 
gressed straight line (2.7). The linearity of the Arrhenius plot can be checked 
statistically using the F ratio test (8 .9) .  

Besides the classical linear approach described, other methods using the 
Arrhenius relationship were also reported for stability prediction. Lordi and 
Scott (10) designed stability charts to facilitate the analysis of accelerated 
stability data. Kirkwood (1  1)  suggested a maximum likelihood nonlinear 
approach for the prediction of the shelf-life of biological products using all 
the available drug potency uersus time data. Nonisothermal kinetic methods 
( I  2-1 8)  have also been developed for stability prediction. 

Carstensen and Su (7) suggested a nonlinear approach for estimating the 
parameters of E, and A in the Arrhenius equation (Eq. 5). The equations were 
derived by substituting the Arrhenius equation (Eq. 5) into either the equation 
of a zero-order reaction (Eq. 1) or that of a first-order reaction (Eq. 2). The 
form of the zero-order equation (Eq. 7) and first-order equation (Eq. 8) were, 
respectively: 

C = CO - rA exp - (3 
The Gauss-Newton iterative technique was used to obtain the parameter 
estimates of E ,  and A.  However, a digital computer was not used and the 
computational steps associated with the estimation of A and E ,  may be too 
tedious. 

Recently, %her (19) proposed a method of kinetic ratio parameter for 
product stability calculation. Both Eqs. 7 and 8 were used to derive equations 
for the calculation of the shelf-life (tw) of the drug. Equations 9 and 10 were 
employed for the zero-order and first-order reactions, respectively: 

Davies ef a/. (20.21) suggested the use of the logarithmic forms of Eqs. 8 
and 10 to calculate drug shelf-life. The statistical properties of the parameter 
estimates of En and A in the equation for the first-order reaction (Eq. 8) were 
evaluated through the use of the Monte Carlo method of computer simulations 
(22). The simulation results showed that estimates of E, and A were robust, 
and meaningful statistics of these two parameter estimates could be obtained. 
The relative standard deviation of the frequency factor ( A )  was large in 
comparison with the prescribed standard deviation of normal distribution for 
generating random errors in the data. After obtaining estimates of A and E,. 
the shelf-life ( I W )  may then be estimated using Eq. 10. The “approximate” 
standard deviation of the shelf-life (190 )  may be calculated by using the 
standard Taylor expansion (23) expressed as: 

(sT)I,)2 = (rw.ASDA)2 + ( I ~ o . E . S D ~ . ) ~  t ~(I~o.A~w.E.COVE.,A) 
(Eq. 1 1)  

where 190.~ and 190.& are, respectively, the partial derivatives of 1g0 with re- 
spect to A and E.; ST), and SDE, are the standard deviations of A and E, .  
respectively; and COVE,,A is the covariance of E,, and A .  No simulation was 
attempted to evaluate the statistical properties of the predicted shelf-life (Iw) 
as estimated by this nonlinear approach. 

I n  this report, the nonlinear approach was further modified to facilitate a 
direct prediction of drug stability using observed values of drug content, time, 
and temperature. Extensive computer simulations were made to evaluate the 
statistical properties of the parameter estimates of E ,  and 190. The applicability 
and versatility of this nonlinear approach were evaluated as well. 

THEORETICAL 

The assumptions made in the subsequent mathematical derivations are that 
( a )  the energy of activation (E,) is not a function of temperature and (b) 
normal storage condition at room temperature is set at 2 5 T .  Since a direct 
prediction of the shelf-life of the drug at  2 5 T  is desired, modification of the 
Arrhenius equation appears necessary. The degradation rate constant at 25’C 
(k298) can be obtained from the Arrhenius equation: 

Rearrangement of Eq. 12 yields: 

A = k298 exp (&) 
Substituting Eq. 13 for A into the Arrhenius equation (Eq. 5)  yields: 

k = k298 exp (A) exp (- 5) 
R298 

If drug degradation follows a first-order reaction. Eq. 2 can be used to de- 
scribe the functional relationship between content and time. Substitution of 
Eq. I4 for k into Eq. 2 and rearrangement yields: 

C = CoexpI-k2981 exp [ ( E , / K ) ( 1 / 2 9 8  - I/T)]l (Eq. 15) 

For a first-order reaction, rgO can be determined by using the following rela- 
tionship: 

190 = 0.!054/kzss (Eq. 16) 

Substituting Eq. 16 for k298 into Eq. 15 yields: 

C = Coexp l-r(O.I054/tg0) exp ((E,/R)(1/298 - I/T)]1 (Eq. 17) 

Equation I7 can be used now to provide direct estimates of f90 and E, via 
nonlinear regression analysis. Time ( I )  and temperature ( T )  are the two in- 
dependent variables. Similarly. equations for either zero- (Eq. 18) or sec- 
ond-order (Eq. 19) degradation can be derived as follows: 

C = Coil - r(0.1/r90) exp ((En/H)(1/298 - ! / T ) ] }  (Eq. 18) 

(Eq. 19) 
co 

1 + f(0.1 l / f w )  exp [(E,/R)(1/298 - I/T)] 
C =  

EXPERIMENTAL 

Generation of Data With or Without Error-Data were generated by using 
Eqs. 17-19 for first-, zero-, and second-order reactions, respectively. Different 
sets of input theoretical values of E, and f90 were assigned to each case. A 
single temperature sequence [323 K, 333 K,  343 K,  and 353 K (50-80OC)) 
and a specified time scale for each temperature were employed to generate, 
a t  first, errorless drug content data. Drug content data were expressed as 
percent of content at time zero. Random numbers, which were alsoexpressed 
as  percent, were selected from a normal distribution with a mean of zero and 
a prescribed standard deviation (24, 25). These selected random numbers 
(used as noise) were added to the errorless drug content data to obtain simu- 
lated experimental “raw data.” The normality of the generated error distri- 
bution was tested by using the chi-square goodness-of-fit test (26). The mean 
and standard deviation of the error distribution were also computed to as- 
certain that the mean was close to zero and that the standard deviation was 
close to that prescribed. 

Calculation of Initial Estimates for Nonlinear Regression Analysis--Since 
the nonlinear regression method uses the iterative technique, the proper initial 
estimates of the parameters should be provided to initiate the iteration (27). 
The initial estimates of E, and (go were calculated in  the following manner: 
( a )  the functional relationships between drug content and time (Eqs. 1.4, and 
3) were employed to estimate the rate constants a t  these temperatures; ( h )  
the linearized form of the Arrhenius relationship (Eq. 6) was used to obtain 
the values of E ,  and A ;  and (c) the shelf-lives ( f g o )  can be calculated using 
Eqs. 20-22 for zero-, first-, and second-order reactions, respectively: 

190 = (O.ICo/A) exp - 
(:;8) 

rW = (0.1054/A) exp - (Rt268) 
Table I-Specification of Computer Simulation Using a Random Error 
Structure 

Order Parameter 
of Reaction Ea rw na Nh 

First 25.00 124.0 32 30 
25.00 260.0 32 30 
10.00 124.0 32 30 
10.00 260.0 32 30 

Zero 25.00 124.0 32 30 
Second 25.00 124.0 32 30 

~~~~~~~ ~ 

0 Number of data points in each set of data. Number of data sets. 
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Table 11-Influence of Data Noise on Final Parameter Estimates of a First-Order Reaction with Standard Deviations of 2.5,5.0, and 7.5% 

Standard Deviation 
2.5% 5.0% 7.5% 

Ea 190 Ea 190 E ,  190 

Estimateb 25.02 f 0.28 124.6 f 7.6 25.06 f 0.57 126.4 f 15.5 25.09 f 0.88 128.1 f 24.8 
(1.1%) (6.1%) (2.3%) ( I  2.3%) (3.5%) (1  9.3%) 

Range of Estimate 24.61-25.57 1 13.0- 139.6 24.14-26. I9 101.9-1 59.7 23.70-26.91 91.9-185.8 
SD of Estimate 0.29 f 0.04 7.50 f 1.12 0.60 f 0.07 15.6 f 2.9 0.88 f 0.1 I 23.4 f 5.7 
Range of SD of Estimate 0.23-0.39 5.57-10.8 0.48-0.76 1 I .O -20.6 0.70-1 .I2 14.5-39.5 
BiasC 0.23 (0.9%) 6.03 (4.9%) 0.44 (1.8%) 12.1 (9.8%) 0.68 (2.7%) 18.7 (15.1%) 

Range of Bias 0.020-0.57 0.343-15.6 0.040- 1. I9 0.689-35.7 0.030 - I .9 1.10-61.8 
f 0.16 f 4.53 f 0.34 f 9.8 f 0.55 f 16.4 

a Theoretical values: E .  = 25.00 kcal/mol; 190 = 124 weeks. Mean f SEM: CV in parentheses. Percent error from the theoretical values in parentheses. 

Statistical Methods-The Monte Carlo method of computer simulations 
(28) was used to evaluate the reliability of the statistics for the estimates of 
E ,  and 190. The NONLIN computer program (29) was employed to obtain 
values of final estimates of E ,  and 190 in the nonlinear approach. After ob- 
taining the final estimates of E ,  and lgo for each set of data, a certain sampling 
distribution for either E ,  or 190 was formed. The mean, standard deviation, 
and bias of the sampling distribution of the parameter estimates were deter- 
mined. The bias, in absolute values, is defined as the difference between the 
parameter estimate and the theoretical value. The statistics of the parameter 
estimates were evaluated by the closeness of the mean of the sampling dis- 
tribution of each parameter estimate to its theoretical value, and the relative 
magnitudes of the standard deviation and the bias. 

For comparison, the classical linear approach was also used to obtain the 
predicted shelf-life of the drug. The shelf-life was estimated through steps 
involving ( a )  the use of the linearized form of drug content-time relationship 
to obtain the rate constants a t  elevated temperatures, (b)  the application of 
the Arrhenius equation (Eq. 6) to estimate E,  and A ,  (c) the extrapolation 
from straight line with the best fit in the Arrhenius plot to obtain the room 
temperature rate constant and its 95% confidence interval, and (d) the 
transformation of the room temperature rate constant and its 95% confidence 
interval to the corresponding value of shelf-life and its 95% confidence interval. 
Three computer programs written in FORTRAN I V  were employed to gen- 
erate the simulated experimental data, to calculate the initial estimates for 
nonlinear regression analysis, and to obtain values of the shelf-life and its 95% 
confidence interval through the use of the classical linear approach. 

RESULTS 

Before performing the computer simulations, Eqs. 17-19 were fitted to 
errorless data. In every case, NONLIN gave final estimates of E ,  and fgo  

exactly identical to the input theoretical values. Standard deviations of these 
two estimates were close to zero. However, they were found to be highly cor- 
related, with a correlation coefficient of 0.97 in all cases. Estimates of E, and 
190 obtained from the simulated “raw data” with prescribed errors also had 
the same high correlation coefficient. The high dependence between parameter 
estimates might complicate the separate estimation of each parameter (30). 
Metzler and Tong (31) indicated that this high correlation between parameters 
may imply meaningless statistics of  the final estimates. 

To examine this high correlation problem between the computer estimates 
of E ,  and 190 and to evaluate the applicability of this “one-step” nonlinear 
approach, the Monte Carlo method of computer simulations was employed 
to probe into the statistical properties of these two final estimates. The sim- 
ulations were divided into four parts which examined (a) the influence of data 
noise on the final estimates of E ,  and 190, (b) the influence of different theo- 
retical values on the estimates of E ,  and fgo, (c) the influence of various orders 
of reaction on the final estimates of E, and fgo, and (d) the influence of the 
“extensiveness” of stability data on the estimates of E,  and 1%. It was reasoned 
that if estimates of these two parameters with meaningful statistical properties 
could be obtained under a wide range of conditions and different distributions 
of random errors in the data set, this high correlation between them may be 
assumed to be attributed to the nature of the mathematical function employed 
for estimating these parameters. 

The simulated experimental “raw data” employed for examining the in- 
fluence of data noise, different theoretical values, and various orders of reaction 
on these two final parameter estimates were generated using a single tem- 
perature sequence of 5O-8O0C and a variable time scale for each temperature. 
The time scales were selected to achieve 260% degradation of drug content 
at the lowest temperature and 280% degradation of content for three higher 
temperatures. The specifications of the computer simulations is shown in Table 

Table Ill-Influence of Initial Estimates on Final Parameter Estimates of 
a First-Order Reaction 

Initial Estimate Final Estimate 
SD Ea 190 Ea 190 

2.5% 17.50 219.0 25.17 f 0.27 127.4 f 7.0 
27.1 I 185.1 25.17 f 0.27 127.5 I 7 . 0  
32.50 40.00 25.1 7 f 0.27 127.5 f 7.0 

5.0% 32.50 40.00 24.85 f 0.60 120.5 f 14.9 
24.19 108.6 24.85 f 0.60 120.5 f 14.9 
17.50 2 10.0 24.85 f 0.60 120.5 f 14.9 

7.5% 17.50 2 10.0 25.07 f 0.77 125.5 f 19.9 
24.75 118.1 25.07 f 0.77 125.6 f 19.9 
32.50 40.00 25.07 f 0.77 125.6 f 19.9 

a Theoretical values: E. = 25.00 kcal/mol; 190 = 124 week 

I .  A wide range of stability and energetics values were chosen to test this 
nonlinear mathematical relationship. Thirty sets of data with 32 data points 
per set were generated for each case. 

The results for simulations which examined the influence ofdata noise on 
final estimates of E ,  and [go are shown in Tables 11-IV. At all three noise 
levels. mean estimates for E ,  and 190, obtained as  the average from 30 indi- 
vidual estimates given by NONLIN, were very close (within 3.3%) to the 
assigned theoretical values. The standard deviations of the estimates given 
by NONLIN, on the average, were found to be acceptable estimates of the 
standard errors of mean estimates for both E ,  and 190 in all cases. Both stan- 
dard errors of mean estimates and average biases of the estimates were small 
and responded well to the change of the noise level in the constructed data. 
Estimates of E,  and 190 also did not vary excessively among these 30 sets of 
data. 

The effect of initial estimates on the computed estimates of E ,  and 190 was 
also tested for each set of data. The data. shown in  Table 111, represented 
simulation trials from one representative run for each noise level. One of these 
three sets of initial estimates was calculated using the linear approach, as 
described in the experimental section. The other two sets of initial estimates 
were arbitrarily chosen to provide different starting points to initiate the it- 
eration step. The results clearly indicated that the locations of the initial es- 
timates had no apparent effect on final estimates of E ,  and fgo. 

The examination of the residuals in  the regression analysis revealed that 
the standard deviations of residuals obtained were also consistent with the 
prescribed standard deviations (Table IV). The r2 values, which can be used 
as measures of good fit (27). were close to 1.0 in all cases. The randomness 
of the residuals in a representative set of data is shown in Fig. I .  The composite 
results showed, therefore, that estimates of E ,  and 190 with meaningful sta- 
tistics can be obtained with Eq. 17 using simulated data with different levels 
of data noise. 

Results for studies which examined the influence of different theoretical 
values and of various orders of reaction on the parameter estimates of E ,  and 
tgo are shown in Tables V and VI. respectively. The statistics of the parameter 
estimates for E,  and 190 were shown to be satisfactory for these conditions. 

The influence of the “extensiveness” of stability data on the final parameter 
estimates of E ,  and (go was also tested. Specification of different types of data 

Table IV-Goodness of Fit of Data from a First-Order Reaction with 
Standard Deviations of 2.5.5.0, and 7.5% a 

Standard Deviation 
2.5% 5.0% 7.5% 

SD of Residuals 2.4 f 0.3 5.0 f 0.6 7.4 f 1.0 
r2 0.989 f 0.0003 0.954 f 0.013 0.900 f 0.031 

Theoretical values: E. = 25.00 kcal/mol; IW = I24 weeks. 
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Table V-Influence of Different Theoretical Values on Final Parameter Estimates of a First-Order Reaction using Data with a Standard Deviation of 5.0% 

Set I Set 2 Set 3 
Ea 190 Ea 190 Ea 190 

Estimateb 24.99 f 0.57 259.9 f 32.8 9.99 f 0.59 124.0 f 16.2 9.99 f 0.60 260.0 f 34.7 
(2.3%) ( I  2.6%) (5.9%) (13.1%) (6.1%) (13.4%) 

Range of Estimate 24.09-26.30 215.7-343.4 8.98-1 1.38 101.8-166.0 8.96- I I .42 212.5-351.1 
SD of Estimate 0.61 f 0.09 32.9 f 6.6 0.61 f 0.09 15.8 i 3.2 0.62 f 0.09 33.8 f 7.0 
Ranne of SD of Estimate 0.49-0.78 22.6-5 1.7 0.46-0.79 10.8-25.0 0.47-0.80 22.9-53.4 
Bias- 

Range of Bias 

0.44 (1.8%) 25.0 (9.6%) 0.46 (4.6%) 12.5 ( lO . l%)  0.47 (4.7%) 26.7 (10.3%) 
f 0.35 f 20.5 f 0.37 f 10.1 f 0.38 f 21.7 

1.20-91.1 0.020- 1.4 0.340f42.0 0.030-1.4 0.010- I .3 0.291-83.4 

Theoretical values: (set I )  E .  = 25.00 kcal/mol. 190 = 2 6 0  weeks; (set 2) E .  = 10.00 kcal/mol, 190 = 124 weeks; (set 3) E .  = 10.00 kcal/mol. 190 = 260 weeks. Mean f SEM;  
C V  in parentheses. Percent error from the theoretical value in parentheses. 

Table VI-Influence of Different Orders of Reaction on Final Parameter Estimates using Data with a Standard Deviation of 5.0% ’ 
Zero Order 

E .  ton 
Second Order 

E ,  190 

Estimate 25.00 f 0.16 124.0 f 10.8 24.96 f 0.77 124.0 f 21.1 
(0.6%) (8.7%) (3.1%) (17.0%) 

Range of Estimate 24.15-26.06 105.8-1 53.7 23.72-26.75 94.6-177.2 

Range of SD of Estimate 0.30-0.53 7.06-13.0 0.69- I .  1 14.7-37.3 
SD of Estimate 0.40 f 0.06 10.2 f 1.9 0.86 f 0. I3 21.3 f 4.9 

BiasC 0.32 (1.3%) 8.22 (6.6%) 0.62 (2.5%) 16.5 (13.3%) 
f 0.26 f 6.77 f 0.45 f 12.8 

Range of Bias 0.0010- 1.1 0.785-29.7 0.0020- 1.8 0.138-53.2 

Theoretical values E .  = 25.00 kcal/mol; 190 = 124 weeks. b Mean f SEM: CV in parentheses. Percent error from the theoretical value in parentheses. 

Table VII-Swcification of Different Tvws of Data Structure 

Temp. Time Scale, week Percent Remaining of 
Structure K Sampling Time Last Sample Drug Contentu 

T v m I  323 10.0 80.0 
3.0 24.0 

343 I .0 8.0 
353 0.4 3.2 

r y p e i i  323 2.0 16.0 
333 0.7 5.6 

16.8 
17.8 
17.7 
14.1 
70.0 
66.9 ... 

343 0.2 1.6 70.7 
353 0.07 0.56 71.0 

Type111 323 0.4 3.2 93.1 
333 0.4 3.2 79.5 
343 0.4 3.2 so. 1 
353 0.4 3.2 14.1 

At the last sampling time, using errorless data for estimation. 

structure is shown in Table VII .  The same temperature sequence (50-80°C) 
was used for all three types of data structure. “Raw data” with type I structure, 
representing an example of extensive data gathering, were generated 
employing a variable time scale to achieve 280% degradation in drug content 
at each temperature. Simulated “raw data” with type I1  structure were gen- 
erated using a variable time scale for each temperature as well. However, these 
time scales were set to account for degradation of the drug content to only 
-30% completion. Data with type 111 data structure were generated by 
employing a fixed sampling time and frequency for all four temperatures 
studied. Thus, data structures shown as type I1  and 111 represented situations 
in which only limited kinetic data were available, as often the case in real 
accelerated stability trials. Simulations using these types of data structures 
are shown in Table VIII .  Despite considerable differences in the degree of 
“extensiveness” in the data base, it was shown that good estimates of Ea and 
rW with satisfactory statistical properties could be obtained for each type of 
data structure. 

Sometimes the initial drug content, Co, is not known and should be esti- 
mated together with the estimation of En and tgo. Simulations for estimating 
these three parameters are shown in Table IX. The nonlinear approach is 
shown to be capable of providing good mean estimates and meaningful sta- 
tistics for CO. E., and t ~ .  Based on kinetic principles, Eqs. 17-19 can be easily 
modified to determine the shelf-life at any chosen content. i.e., either as percent 
of initial or of labelcd strength. 

Comparison between the classical linear approach and the nonlinear ap- 
proach for the prediction of drug stability was made by using a first-order 
degradation reaction as an example. The “raw data’’ generated for the study 
that examined the influence of data noise on the final estimates of En and tw 
were employed for this comparison between the two methods. The shelf-lives 

( t ~ )  and their 95% confidence intervals as  estimated by using either the 
classical linear approach or the present nonlinear approach for three repre- 
sentative sets of data (each at  three noise levels) are shown in Fig. 2. The 
nonlinear approach appeared to provide better mean estimates of drug 
shelf-life with much smaller and more symmetrical 95% confidence intervals 
than did the classical approach in all cases examined. 

It is desirable to compare the nonlinear approach with the classical linear 
approach using real stabilitydata. Accelerated stability data of vitamin A in 
multivitamin tablets (2) and of NAD (32) were employed for this purpose; 
results of this comparison are shown in Table X. The linear and nonlinear 
methods provided identical mean estimates of shelf-life in both cases. More- 
over, the nonlinear method also provided a more symmetrical and smaller 95% 
confidence interval in the prediction of vitamin A stability than did the classical 
linear approach. However, both linear and nonlinear methods predicted 
somewhat longer shelf-lives of these two compounds than that experimentally 
determined at  room temperature. It is possible that both systems possess some 
degree of non-Arrhenius behavior, a problem that neither the linear nor the 
nonlinear approach can correct. 
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Figure 1 -Representative plot of residuals. Calculated values are expressed 
as percent of drug content at time zero. Residual is the dqference between 
the observed value and calculated value of drug content for each data 
point. 
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Table VIII-Influence of Different Types of Data Structure on Final Parameter Estimates of a First-Order Reaction using Data with a Standard Deviation 
of 2.5% a 

Data Structure 
Type I Type I1 Type 111 

Ea 190 Ea 190 Ea 190 

( I  .3%) (6.7%) (2.9%) ( 1  4.2%) (3.3%) (20.0770) 
Estimateb 25. I2  f 0.32c 127.7 f 8.6 25.19 f 0.73 130.5 f 18.6 25.23 f 0.84 133.4 f 26.7 

Range of Estimate 24.61-25.59 1 1  5.1- 136.9 24.5 3 -26.3 1 101.6- 161.5 24.15-26.77 100.3- 187.0 

Ranae of SD of Estimate 0.23-0.30 5.55-8.22 0.43-0.59 8.96-17.8 0.56-0.80 14.0-34.0 
0.68 f 0.07 22.1 f 6.0 S D  of Estimate 0.26 f 0.03 6.90 f 0.90 0.50 f 0.05 13.2 f 2.7 

Bias2 

Range of Bias 

0.29 (1.1%) 7.76 (6.3%) 0.61 (2.4%) 15.5 ( 1  2.5%) 0.67 (2.7%) 21.2 (17.1%) 
f 0.17 f 4.63 f 0.41 f 1 1 . 1  f 0.51 f 17.6 
0.10-0.48 0.490- 16.2 0.029-1.3 0.0900-37.5 0.068- 1.7 2.60-63.0 

a Theoretical values E ,  = 25.00 kcal/mol; 190 = 124 weeks. Mean f S E M ;  CV in parentheses. N = 10. Pcrccnt error from the theoretical value in parcnthcscs. 

Table IX-Values of Parameter Estimates for a First-Order Reaction, 
Including the Initial Drug Content, CO, a s  a Parameter, using Data with a 
Standard Deviation of 2.5% 

Parameter 
E ,  190 co 

Estimateb 24.97 f 0.22 122.3 f 6.0 100.2 f 1.9 
(0.9%) (4.9%) ( I .9%) 

Range of estimate 24.76-25.45 113.3-131.1 97.19-102.6 
SD of estimate 0.33 f 0.05 9.34 f 1.51 1.66 f 0.25 
Range of SD of Estimate 0.26-0.41 7.94-1 1.8 1.30f1.99 
BiasC 0.17 (0.7%) 5.26 (4.2%) I . 5 5  ( I  .6%) 

f 0.13 f 2.85 f 0.89 
Range of Bias 0.030-0.450 0.740- 10.7 0.270-2.81 

Theoretical values: E .  = 25.00 kcal/mol; 190 = I24 weeks; CO = 10W0, Mean f 
SEM: CV in parentheses. Pcrccnt error from the theoretical value in parenthescs. 

DISCUSSION 

The nonlinear approach shown in  this report appears to be capable of pre- 
dicting the shelf-life ( t g o )  directly and reproducibly. The uncertainties in the 
estimated r90 are the reflection of the errors inherent in the observed drug 
content data. The nonlinear approach can be applied to various orders of 
degradation reaction and a wide range of different theoretical values of E ,  
and tgo .  It was shown that although some experimental "raw data" n a y  not 

2000 -1 

-i 

I 1  

111111111111111111 
Method:L N L N L N L N L N L N L N L N L N 
SO&): 2.5 5.0 1.5 2.5 5.0 1.5 2.5 5.0 1.5 

Data: Set 1 Set 2 Set 3 
Figure 2-Plot of the parameter estimate of the shelf-life ft90) for  each of 
the two methods of esrimation in three sets of data with three different levels 
of noise. Data represent mean estimate and its 95% confidence interval after 
using rhe nonlinear approach (N. a) and the classical linear approach (L.  
W); (- - - -) represents the rheoretical value of shelf-life of124 weeks. 

be very extensive, good estimation of shelf-life with meaningful statistical 
properties can still be obtained. Furthermore, this approach provides better 
mean estimates of 190 with much smaller 95% confidence intervals than the 
classical approach. Obviously, this method of drug stability prediction will 
be of little value without the aid of appropriate computer programs to carry 
out the nonlinear parameter estimation procedure. Fortunately, several 
computer programs including NONLIN (29). BMDP-P3R (33), SAAM (34), 
etc. are available for nonlinear regression analysis. The 1974 version of the 
NONLIN program was selected in this study because this particular computer 
program, which can be used to fit various models (27), is a widely used pro- 
gram in the area of pharmacokinetics and related pharmaceutical sciences. 

A high correlation between E ,  and 190 was found during the study of 
computer simulations. This high dependency between the parameter estimates 
was suggested by Metzler and Tong as  a possible indication of meaningless 
statistics of these estimates (31). The Monte Carlo method of computer 
simulations was used to examine this high correlation problem and to evaluate 
the statistical properties of the final estimates of E, and t g o  in this report. 
During the regression analysis for each set of data by NONLIN, the final 
parameter estimates of E ,  and igo converged on the mathematical minimum 
after only 3-5 iteration steps without any computational difficulty. 

The statistics of the parameter estimates can be evaluated by examining 
the sampling distributions of both E.  and 190. The sampling distributions of 
both E ,  and tgo  were symmetrical about the mean estimates and had small 
standard deviations and biases. A large standard deviation is usually reflective 
of a poor determination of a parameter estimate (35,36). Examination of the 
residuals (36) and of the correlation of the observations ( r 2  value) can also 
be used to evaluate the statistics of the parameter estimates in a model. Our 
results indicated that ( a )  the standard deviations of the residuals were con- 
sistent with the prescribed standard deviations and (b)  the plots of the residuals 
uersus the calculated values for each set of data showed the random nature 
of the residuals. The r2  values found were close to perfcction ( i .e . ,  I .O) in all 
the data sets examined. Furthermore, it has been stated (37) that if the non- 
linear regression method is correct, different sets of initial estimates for each 
set of data should converge on the same final cstimatcs. Our simulation trials 
(Table I l l )  showed this to be the case here. Therefore, it appears that good 
mean estimates of E, and 190 with meaningful statistical properties are ob- 
tained using the nonlinear method, even though these two parameters are 
highly correlated. 

Our observation of a correlation between the final estimates of E ,  and 190 

is not unique. Metzler and Tong (31) showed the high correlation between 
Vmx and K,,, in the parameter estimations of the Michaelis-Menten equation 
to be accompanied by meaningless statistics. They attributed this result to 
the peculiar nature of the mathematical function that relates these two vari- 
ables, in that a change in the estimate of V,,, may becompensated by a si- 
multaneous change in K,,,. However, Bard (22) had shown that meaningful 
statistical properties of the parameter cstimates of A and E ,  (Eq. 8) could 
be obtained despite the high correlation ( i .e . ,  r = 0.98) between them. Thus, 

Table X-Comparison Between the Classical Linear Approach and 
Nonlinear Method for the Prediction of Drug Stability using Literature 
Data 

Shelf-Life, wcek 
Literature Linear Method Nonlinear Method 

Studv Mean 95% CI" Mean 95% CI" 

I b  1 13.3d 49.25-262.2d 109.0 61.73-156.2 
11' 6.49 5.67-7.44 6.63 5.54-7.71 

~~ ~ ~~ 

Confidence interval. Prediction of vitamin A stability in multivitamin tablets. The 
Prediction of the 

These values were calculated by using the re- 
accelerated stability data were obtained from Fig. I in the Ref. 2. 
stability of NAD. taken from Ref. 32. 
ported rate constants. 
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it seems that the presence of a high correlation between parameter estimates 
may not necessarily indicate that the statistical properties of these final esti- 
mates are meaningless. 

In conclusion. meaningful statistics of the final parameter estimates of E.  
and tgo can be obtained by the nonlinear approach described in this paper. This 
approach is applicable over a wide range of different theoretical values of E .  
and rW, different orders of reaction, different levels of noise in data, and dif- 
ferent types of data structure. The advantage of this nonlinear approach is 
that it uses data of drug content, time, and temperature to provide a direct 
estimation of shelf-life with relevant statistics This method may be potentially 
useful for the realistic prediction of drug stability of pharmaceutical prod- 
ucts. 
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Abstract 0 The tricyclic amines promazine, promethazine, chlorpromazine, 
triflupromazine. and trifluperazine form solid ion pairs with ATP in a 1.2 
molar ratio. There is a good correlation between the measured Ksp and the 
apparent diffusion constants of the ion pairs with the critical micelle con- 
centration (CMC) of the corresponding phenothiazines. Solid ion pairs are 
solubilized by phenothiazine micelles; the binding constants of ATP to drug 
micelles are calculated from solubility data at 25OC and can be related to the 
CMC of the phenothiazines. 

Keyphrases 0 ATP-behavior toward phenothiazine drugs, binding, micellar 
solubilization Binding- behavior of ATP toward phenothiazine drugs, 
micellar solubili;?ation 0 Phenothiazine drugs-behavior of ATP. binding, 
micellar solubilization 0 Micellar solubilization-behavior of ATP toward 
phenothiazine drugs, binding 
~~~~~~ ~ ~~ 

The mechanism of action of phenothiazine drugs is difficult 
to explain because of their great variety of biochemical and 
physiological effects. Membrane interactions seem to be im- 
portant particularly in the case of chlorpromazine ( 1  -4). 
Phenothiazines, like many tricyclic amines, have amphiphatic 
properties and are surface-active drugs (4-7). Their micelles 

are able to solubilize in uitro various high molecular weight 
drugs such as pteridine and porphyrin derivatives (8 ,9) ;  the 
binding constants of solubilized compounds with micelles are 
rather high. Previously, Blei (10) studied the decrease of 
chlorpromazine surface tension in the presence of ATP, while 
Moriguchi et al. (1  1) observed the formation of a I : 1 complex 
between the neuroleptic agent and ATP. 

The aim of the present work is to investigate the behavior 
of five phenothiazines with different pharmacological activity 

Promethazine 
Promarine 
Chlorpromazine 
Triflupromazine 
Trifluperazine 
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